

MATHEMATICS SPECIALIST 3,4 TEST 2 SECTION ONE 2016 NON Calculator Section

NON Calculator Section Chapters 3 and 4

Nam	ne	35 minutes 35 marks	
Que	stion 1		(7 marks)
Two	functions are defined as $f(x) = \sqrt{x-1}$ and $g(x) = \frac{1}{x-1}$		
(a)	Evaluate $gf\left(\frac{13}{9}\right)$		(2 marks)
(b)	Find in simplified form $gg(x)$.		(2 marks)
	88 (W)		(2 marks)
	į		
	3.		

(3 marks)

Determine the domain of f(g(x))

(c)

(a) Determine the domain and range of f(g(x)) given that $f(x) = \frac{12}{x+1}$ and $g(x) = \sqrt{x+1}$

(b) Given that f(x) = 2x + 3 and $g(f(x)) = 4x^2 + 12x + 11$, find g(x). (3)

The graph of function $f(x) = \frac{1}{x^4 + 1}$ for the domain 0 < x < 2 is shown below.

(a) Determine the exact value for
$$\lim_{x \to 2^+} f(x)$$
 (2)

(b) On the axes given above, sketch the graph of the inverse function,
$$y = f^{-1}(x)$$
 (2)

(c) Obtain the rule for
$$f^{-1}(x)$$
. (2)

A rational function R(x) is sketched below. Function R(x) has the following properties:

- Only one pole or a discontinuity at x = 4
- Two horizontal intercepts at x = 2 and x = -2.
- A horizontal asymptote at y = -2

(a) If $R(x) = \frac{k(x^2 - a)}{(x - b)(x - c)}$ explain why k = -2, a = 4, b = 4 and c = 4

(4)

(b) Determine $\lim_{x\to 4} R(x)$.

1

Question 5

(7 marks)

Solve the following. (a) |x-2|>4

(a)
$$|x-2| > 4$$

(1)

(b) $|x-7| \le |x-1|$

1

(2)

ţ

(c)
$$|3x+4| \ge |5x+2|$$
 (2)

t

$$|x-6| \le 4x+3 \qquad (2)$$

MATHEMATICS SPECIALIST 3,4 TEST 2 SECTION TWO 2016

Calculator Section Chapters 3 and 4

Name	Time:	20 minutes	
	Total:	20 marks	

Question 1

(5 marks)

The function f, defined for all real x by f(x) = |x-a| + |x+b|, where a and b are positive integers, has the following graph.

(a) Find the values of a and b.

(b) Express f(x) as a piecewise function.

Question 2 (5 marks)

At 10.00am, two bumper cars at the royal show, G and T, have position vectors, \mathbf{r} m, and velocity vectors, \mathbf{v} m/s, as shown below:

$$\mathbf{r}_G = 3\mathbf{i} + 9\mathbf{j}$$
 $\mathbf{v}_G = -\mathbf{i} - \mathbf{j}$ $\mathbf{r}_T = 9\mathbf{i}$ $\mathbf{v}_T = -5\mathbf{i} + 5\mathbf{j}$

1

Prove that the bumper cars will collide if they continue with these velocities and find the time and location of the collision.

Question 3

Sketch the graph $y=\frac{x^3}{(x+4)(2x-3)}$., the asymptotes and describe the behaviour of the graph as $x\to\pm\infty$. Give the equations for the vertical and other asymptotes.

1

Question 4 (5 marks)

Find the Cartesian equation of the line perpendicular to the vector $7\underline{i}+5\underline{j}$ and passing through the point (-1,3)

ţ